On an Integral Inequality of Feng Qi
نویسندگان
چکیده
In this note, we study a general version of a problem posed by Feng Qi in [10] in the context of a measured space endowed with a positive finite measure. For other studies and results, one can consult the papers [2], [3], [5], [8], [9], [12], [13] and [14]. Our basic tool is the classical Hölder inequality. By the convexity method (see [3]) we give an interpretation of the lower bound occuring in our main result (see Theorem 2.2 below).
منابع مشابه
On an Open Problem regarding an Integral Inequality
In the article, a functional inequality in abstract spaces is established, which gives a new affirmative answer to an open problem posed by Feng Qi in [9]. Moreover, some integral inequalities and a discrete inequality involving sums are deduced.
متن کاملFurther Development of Qi-type Integral Inequality
We give some further answers to the open problem posed in the article [Feng Qi, Several integral inequalities, J. Inequal. Pure and Appl. Math., 1(2) (2000), Art. 19. (http://jipam.vu.edu.au/article.php?sid=113]).] Being Qi’s inequality of moment type, we consider the moments of uniformly distributed random variables and construct certain suitable probability measures to solve the posed problem...
متن کاملSome Bounds for the Complete Elliptic Integrals of the First and Second Kinds
In the article, the complete elliptic integrals of the first and second kinds are bounded by using the power series expansions of some functions, the celebrated Wallis inequality, and an integral inequality due to R. P. Agarwal, P. Cerone, S. S. Dragomir and F. Qi. Mathematics subject classification (2010): 26D15, 33C75, 33E05.
متن کاملSome Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body
In the paper, the authors derive an integral representation, present a double inequality, supply an asymptotic formula, find an inequality, and verify complete monotonicity of a function involving the gamma function and originating from geometric probability for pairs of hyperplanes intersecting with a convex body.
متن کاملOn Feng Qi-type Integral Inequalities for Conformable Fractional Integrals
In this paper, we establish the generalized Qi-type inequality involving conformable fractional integrals. The results presented here would provide extensions of those given in earlier works. 1. Introduction In the last few decades, much signi cant development of integral inequalities had been established. Integral inequalities have been frequently employed in the theory of applied sciences, di...
متن کامل